Operator and Differential Equations in Ordered Spaces
نویسندگان
چکیده
منابع مشابه
FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES
In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.
متن کاملNonsmooth and Nonlocal Differential Equations in Lattice-ordered Banach Spaces
In this paper, we apply fixed point results for mappings in partially ordered function spaces to derive existence results for initial and boundary value problems in an ordered Banach space E. Throughout this paper, we assume that E satisfies one of the following hypotheses. (A) E is a Banach lattice whose every norm-bounded and increasing sequence is strongly convergent. (B) E is a reflexive la...
متن کاملNonlinear differential equations of Riccati type on ordered Banach spaces
In this paper we consider a general class of time-varying nonlinear differential equations on infinite dimensional ordered Banach spaces, which includes as special cases many known differential Riccati equations of optimal control. Using a linear matrix inequalities (LMIs) approach we provide necessary and sufficient conditions for the existence of some global solutions such as maximal, stabili...
متن کاملOn Non-absolute Functional Volterra Integral Equations and Impulsive Differential Equations in Ordered Banach Spaces
In this article we derive existence and comparison results for discontinuous non-absolute functional integral equations of Volterra type in an ordered Banach space which has a regular order cone. The obtained results are then applied to first-order impulsive differential equations.
متن کاملSingular Regularization of Operator Equations in L1 Spaces via Fractional Differential Equations
An abstract causal operator equation y = Ay defined on a space of the form L1([0, τ ], X), with X a Banach space, is regularized by the fractional differential equation ε(D 0 yε)(t) = −yε(t) + (Ayε)(t), t ∈ [0, τ ], where Dα 0 denotes the (left) Riemann-Liouville derivative of order α ∈ (0, 1). The main procedure lies on properties of the Mittag-Leffler function combined with some facts from co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1999
ISSN: 0022-247X
DOI: 10.1006/jmaa.1999.6299